Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.860
1.
Pediatr Surg Int ; 40(1): 125, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714568

BACKGROUND: Postoperative pulmonary growth in congenital diaphragmatic hernias (CDH) remains unclear. We investigated postoperative pulmonary vascular growth using serial lung perfusion scintigraphy in patients with CDH. METHODS: Neonates with left CDH who underwent surgery and postoperative lung perfusion scintigraphy at our institution between 2001 and 2020 were included. Patient demographics, clinical courses, and lung scintigraphy data were retrospectively analyzed by reviewing medical records. RESULTS: Twenty-one patients with CDH were included. Of these, 10 underwent serial lung scintigraphy. The ipsilateral perfusion rate and median age on the 1st and serial lung scintigraphy were 32% (34 days) and 33% (3.6 years), respectively. Gestational age at prenatal diagnosis (p = 0.02), alveolar-arterial oxygen difference (A-aDO2) at birth (p = 0.007), and preoperative nitric oxide (NO) use (p = 0.014) significantly correlated with the 1st lung scintigraphy. No other variables, including operative approach, were significantly correlated with the 1st or serial scintigraphy findings. All patients improved lung perfusion with serial studies [Difference: + 7.0 (4.3-13.25) %, p = 0.001, paired t-test]. This improvement was not significantly correlated with preoperative A-aDO2 (p = 0.96), NO use (p = 0.28), or liver up (p = 0.90). The difference was significantly larger in patients who underwent thoracoscopic repair than in those who underwent open abdominal repair [+ 10.6 (5.0-17.1) % vs. + 4.25 (1.2-7.9) %, p = 0.042]. CONCLUSION: Our study indicated a postoperative improvement in ipsilateral lung vascular growth, which is possibly enhanced by a minimally invasive approach, in patients with CDH.


Hernias, Diaphragmatic, Congenital , Lung , Humans , Hernias, Diaphragmatic, Congenital/surgery , Hernias, Diaphragmatic, Congenital/diagnostic imaging , Retrospective Studies , Female , Male , Infant, Newborn , Lung/diagnostic imaging , Lung/blood supply , Postoperative Period , Perfusion Imaging/methods , Child, Preschool
2.
J Appl Clin Med Phys ; 25(5): e14368, 2024 May.
Article En | MEDLINE | ID: mdl-38657114

OBJECTIVE: Alzheimer's disease, an irreversible neurological condition, demands timely diagnosis for effective clinical intervention. This study employs radiomics analysis to assess image features in default mode network cerebral perfusion imaging among individuals with cognitive impairment. METHODS: A radiomics analysis of cerebral perfusion imaging was conducted on 117 patients with cognitive impairment. They were divided into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest were employed to select and model image features, followed by logistic regression analysis of LASSO and Random Forest results. Diagnostic performance was assessed by calculating the area under the curve (AUC). RESULTS: In the training set, LASSO achieved AUC of 0.978, Random Forest had an AUC of 0.933. In the validation set, LASSO had AUC of 0.859, Random Forest had AUC of 0.986. By conducting Logistic Regression analysis in combination with LASSO and Random Forest, we identified a total of five radiomics features, with four related to morphology and one to textural features, originating from the medial prefrontal cortex and middle temporal gyrus. In the training set, Logistic Regression achieved AUC of 0.911, while in the validation set, it attained AUC of 0.925. CONCLUSION: The medial prefrontal cortex and middle temporal gyrus are the two brain regions within the default mode network that hold the highest significance for Alzheimer's disease diagnosis. Radiomics analysis contributes to the clinical assessment of Alzheimer's disease by delving into image data to extract deeper layers of information.


Alzheimer Disease , Perfusion Imaging , Humans , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Perfusion Imaging/methods , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation/physiology , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging/methods , Prognosis , Radiomics
3.
Nitric Oxide ; 147: 6-12, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38588918

Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.


Lung , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/physiopathology , Lung/diagnostic imaging , Lung/blood supply , Tomography, X-Ray Computed , Pulmonary Circulation , Perfusion Imaging/methods , Animals
4.
J Integr Neurosci ; 23(4): 70, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38682213

Alzheimer's disease (AD) is the leading cause of dementia worldwide and significantly impacts the essential functions of daily life and social activities. Research on AD has found that its pathogenesis is related to the extracellular accumulation of amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles in the cortical and limbic areas of the human brain, as well as cerebrovascular factors. The detection of Aß or tau can be performed using various probes and methodologies. However, these modalities are expensive to implement and often require invasive procedures, limiting accessibility on a large scale. While magnetic resonance imaging (MRI) and computed tomography (CT) are generally used for morphological and structural brain imaging, they show wide variability in their accuracy for the clinical diagnosis of AD. Several novel imaging modalities have emerged as alternatives that can accurately and vividly display the changes in blood flow and metabolism in each brain area and enable physicians and researchers to gain insights into the generation and progression of the cerebro-microvascular pathologies of AD. In this review, we summarize the current knowledge on microvascular perfusion imaging modalities and their application in AD, including MRI (dynamic susceptibility contrast-MRI, arterial spin labeling-MRI), CT (cerebral CT perfusion imaging), emission computed tomography (positron emission tomography (PET), single-photon emission computed tomography (SPECT)), transcranial doppler ultrasonography (TCD), and retinal microvascular imaging (optical coherence tomography imaging, computer-assisted methods for evaluating retinal vasculature).


Alzheimer Disease , Perfusion Imaging , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Perfusion Imaging/methods , Cerebrovascular Circulation/physiology , Microvessels/diagnostic imaging , Brain/diagnostic imaging
5.
Neuroradiology ; 66(5): 749-759, 2024 May.
Article En | MEDLINE | ID: mdl-38498208

PURPOSE: CT perfusion of the brain is a powerful tool in stroke imaging, though the radiation dose is rather high. Several strategies for dose reduction have been proposed, including increasing the intervals between the dynamic scans. We determined the impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion from a large dataset of patients with suspected stroke. METHODS: We retrospectively included 3555 perfusion scans from our clinical routine dataset. All cases were processed using the perfusion software VEOcore with a standard sampling of 1.5 s, as well as simulated reduced temporal resolution of 3.0, 4.5, and 6.0 s by leaving out respective time points. The resulting perfusion maps and calculated volumes of infarct core and mismatch were compared quantitatively. Finally, hypothetical decisions for mechanical thrombectomy following the DEFUSE-3 criteria were compared. RESULTS: The agreement between calculated volumes for core (ICC = 0.99, 0.99, and 0.98) and hypoperfusion (ICC = 0.99, 0.99, and 0.97) was excellent for all temporal sampling schemes. Of the 1226 cases with vascular occlusion, 14 (1%) for 3.0 s sampling, 23 (2%) for 4.5 s sampling, and 63 (5%) for 6.0 s sampling would have been treated differently if the DEFUSE-3 criteria had been applied. Reduction of temporal resolution to 3.0 s, 4.5 s, and 6.0 s reduced the radiation dose by a factor of 2, 3, or 4. CONCLUSION: Reducing the temporal sampling of brain perfusion CT has only a minor impact on image quality and treatment decision, but significantly reduces the radiation dose to that of standard non-contrast CT.


Brain Ischemia , Stroke , Humans , Retrospective Studies , Drug Tapering , Stroke/diagnostic imaging , Stroke/therapy , Brain/diagnostic imaging , Brain/blood supply , Tomography, X-Ray Computed/methods , Brain Ischemia/therapy , Perfusion , Perfusion Imaging/methods
6.
Comput Med Imaging Graph ; 114: 102376, 2024 Jun.
Article En | MEDLINE | ID: mdl-38537536

Acute ischemic stroke is a critical health condition that requires timely intervention. Following admission, clinicians typically use perfusion imaging to facilitate treatment decision-making. While deep learning models leveraging perfusion data have demonstrated the ability to predict post-treatment tissue infarction for individual patients, predictions are often represented as binary or probabilistic masks that are not straightforward to interpret or easy to obtain. Moreover, these models typically rely on large amounts of subjectively segmented data and non-standard perfusion analysis techniques. To address these challenges, we propose a novel deep learning approach that directly predicts follow-up computed tomography images from full spatio-temporal 4D perfusion scans through a temporal compression. The results show that this method leads to realistic follow-up image predictions containing the infarcted tissue outcomes. The proposed compression method achieves comparable prediction results to using perfusion maps as inputs but without the need for perfusion analysis or arterial input function selection. Additionally, separate models trained on 45 patients treated with thrombolysis and 102 treated with thrombectomy showed that each model correctly captured the different patient-specific treatment effects as shown by image difference maps. The findings of this work clearly highlight the potential of our method to provide interpretable stroke treatment decision support without requiring manual annotations.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/therapy , Four-Dimensional Computed Tomography , Brain Ischemia/diagnostic imaging , Stroke/diagnostic imaging , Stroke/therapy , Perfusion Imaging/methods , Perfusion
7.
J Stroke Cerebrovasc Dis ; 33(6): 107677, 2024 Jun.
Article En | MEDLINE | ID: mdl-38460777

OBJECTIVES: To investigate the relationship between baseline computed tomography perfusion deficit volumes and functional outcomes in patients with basilar artery occlusion (BAO) undergoing endovascular therapy. METHODS: This was a single-center study in which the data of 64 patients with BAO who underwent endovascular therapy were retrospectively analyzed. All the patients underwent multi-model computed tomography on admission. The posterior-circulation Acute Stroke Prognosis Early Computed Tomography Score was applied to assess the ischemic changes. Perfusion deficit volumes were obtained using Syngo.via software. The primary outcome of the analysis was a good functional outcome (90-day modified Rankin Scale score ≤ 3). Logistic regression and receiver operating characteristic curves were used to explore predictors of functional outcome. RESULTS: A total of 64 patients (median age, 68 years; 72 % male) were recruited, of whom 26 (41 %) patients achieved good functional outcomes, while 38 (59 %) had poor functional outcomes. Tmax > 10 s, Tmax > 6 s, and rCBF < 30 % volume were independent predictors of good functional outcomes (odds ratio range, 1.0-1.2; 95 % confidence interval [CI], 1.0-1.4]) and performed well in the receiver operating characteristic curve analyses, exhibiting positive prognostic value; the areas under the curve values were 0.85 (95 % CI, 0.75-0.94), 0.81 (95 % CI, 0.70-0.90), and 0.78 (95 % CI, 0.67-0.89). CONCLUSION: Computed tomography perfusion deficit volume represents a valuable tool in predicting high risk of disability and mortality in patients with BAO after endovascular treatment.


Cerebrovascular Circulation , Computed Tomography Angiography , Endovascular Procedures , Functional Status , Perfusion Imaging , Predictive Value of Tests , Recovery of Function , Vertebrobasilar Insufficiency , Humans , Male , Female , Aged , Endovascular Procedures/adverse effects , Retrospective Studies , Middle Aged , Treatment Outcome , Vertebrobasilar Insufficiency/diagnostic imaging , Vertebrobasilar Insufficiency/physiopathology , Vertebrobasilar Insufficiency/therapy , Perfusion Imaging/methods , Disability Evaluation , Aged, 80 and over , Time Factors , Cerebral Angiography , Risk Factors , Basilar Artery/diagnostic imaging , Basilar Artery/physiopathology , Multidetector Computed Tomography , ROC Curve
8.
AJNR Am J Neuroradiol ; 45(3): 277-283, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38302197

BACKGROUND AND PURPOSE: The established global threshold of rCBF <30% for infarct core segmentation can lead to false-positives, as it does not account for the differences in blood flow between GM and WM and patient-individual factors, such as microangiopathy. To mitigate this problem, we suggest normalizing each voxel not only with a global reference value (ie, the median value of normally perfused tissue) but also with its local contralateral counterpart. MATERIALS AND METHODS: We retrospectively enrolled 2830 CTP scans with suspected ischemic stroke, of which 335 showed obvious signs of microangiopathy. In addition to the conventional, global normalization, a local normalization was performed by dividing the rCBF maps with their mirrored and smoothed counterpart, which sets each voxel value in relation to the contralateral counterpart, intrinsically accounting for GM and WM differences and symmetric patient individual microangiopathy. Maps were visually assessed and core volumes were calculated for both methods. RESULTS: Cases with obvious microangiopathy showed a strong reduction in false-positives by using local normalization (mean 14.7 mL versus mean 3.7 mL in cases with and without microangiopathy). On average, core volumes were slightly smaller, indicating an improved segmentation that was more robust against naturally low blood flow values in the deep WM. CONCLUSIONS: The proposed method of local normalization can reduce overestimation of the infarct core, especially in the deep WM and in cases with obvious microangiopathy. False-positives in CTP infarct core segmentation might lead to less-than-optimal therapy decisions when not correctly interpreted. The proposed method might help mitigate this problem.


Brain Ischemia , Stroke , Humans , Brain Ischemia/therapy , Retrospective Studies , Tomography, X-Ray Computed/methods , Infarction , Cerebrovascular Circulation , Perfusion , Perfusion Imaging/methods
9.
NMR Biomed ; 37(6): e5115, 2024 Jun.
Article En | MEDLINE | ID: mdl-38355219

Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.


Magnetic Resonance Angiography , Rats, Sprague-Dawley , Animals , Male , Magnetic Resonance Angiography/methods , Perfusion Imaging/methods , Spin Labels , Rats , Cervical Cord/diagnostic imaging , Cervical Cord/blood supply , Spinal Cord/blood supply , Spinal Cord/diagnostic imaging
10.
N Engl J Med ; 390(8): 701-711, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38329148

BACKGROUND: Thrombolytic agents, including tenecteplase, are generally used within 4.5 hours after the onset of stroke symptoms. Information on whether tenecteplase confers benefit beyond 4.5 hours is limited. METHODS: We conducted a multicenter, double-blind, randomized, placebo-controlled trial involving patients with ischemic stroke to compare tenecteplase (0.25 mg per kilogram of body weight, up to 25 mg) with placebo administered 4.5 to 24 hours after the time that the patient was last known to be well. Patients had to have evidence of occlusion of the middle cerebral artery or internal carotid artery and salvageable tissue as determined on perfusion imaging. The primary outcome was the ordinal score on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability and a score of 6 indicating death) at day 90. Safety outcomes included death and symptomatic intracranial hemorrhage. RESULTS: The trial enrolled 458 patients, 77.3% of whom subsequently underwent thrombectomy; 228 patients were assigned to receive tenecteplase, and 230 to receive placebo. The median time between the time the patient was last known to be well and randomization was approximately 12 hours in the tenecteplase group and approximately 13 hours in the placebo group. The median score on the modified Rankin scale at 90 days was 3 in each group. The adjusted common odds ratio for the distribution of scores on the modified Rankin scale at 90 days for tenecteplase as compared with placebo was 1.13 (95% confidence interval, 0.82 to 1.57; P = 0.45). In the safety population, mortality at 90 days was 19.7% in the tenecteplase group and 18.2% in the placebo group, and the incidence of symptomatic intracranial hemorrhage was 3.2% and 2.3%, respectively. CONCLUSIONS: Tenecteplase therapy that was initiated 4.5 to 24 hours after stroke onset in patients with occlusions of the middle cerebral artery or internal carotid artery, most of whom had undergone endovascular thrombectomy, did not result in better clinical outcomes than those with placebo. The incidence of symptomatic intracerebral hemorrhage was similar in the two groups. (Funded by Genentech; TIMELESS ClinicalTrials.gov number, NCT03785678.).


Brain Ischemia , Ischemic Stroke , Perfusion Imaging , Tenecteplase , Thrombectomy , Tissue Plasminogen Activator , Humans , Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy , Brain Ischemia/mortality , Brain Ischemia/surgery , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/therapeutic use , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/diagnostic imaging , Perfusion , Perfusion Imaging/methods , Stroke/diagnostic imaging , Stroke/drug therapy , Stroke/mortality , Stroke/surgery , Tenecteplase/administration & dosage , Tenecteplase/adverse effects , Tenecteplase/therapeutic use , Thrombectomy/adverse effects , Thrombectomy/methods , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome , Double-Blind Method , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/drug therapy , Ischemic Stroke/mortality , Ischemic Stroke/surgery , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/surgery , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/drug therapy , Carotid Artery Diseases/surgery , Brain/blood supply , Brain/diagnostic imaging , Time-to-Treatment
11.
J Neuroimaging ; 34(3): 308-319, 2024.
Article En | MEDLINE | ID: mdl-38192155

BACKGROUND AND PURPOSE: Frontotemporal dementia (FTD) is the second most common cause of presenile dementia. The clinical distinction between FTD, Alzheimer's disease (AD), and other dementias is a clinical challenge. Brain perfusion SPECT may contribute to the diagnosis of FTD, but its value is unclear. METHODS: We performed a systematic review to investigate the diagnostic accuracy of the brain SPECT in (1) distinguishing FTD from AD and other dementias and (2) differentiating FTD variants. RESULTS: Overall, 391 studies were retrieved on the initial search and 35 studies composed the final selection, comprising a total number of 3142 participants of which 1029 had FTD. The sensitivity and the specificity for the differential diagnosis of FTD versus AD ranged from 56% to 88% and from 51% to 93%, respectively. SPECT is not superior to the clinical method of diagnosis, but the combination of SPECT with clinical data seems to improve the diagnostic accuracy. CONCLUSION: Brain perfusion SPECT has a limited value in the diagnostic framework of FTD. SPECT can be performed when FDG-PET is not available. SPECT is recommended only for selected cases when the diagnosis is challenging using conventional methods.


Brain , Frontotemporal Dementia , Sensitivity and Specificity , Tomography, Emission-Computed, Single-Photon , Humans , Frontotemporal Dementia/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Brain/diagnostic imaging , Reproducibility of Results , Diagnosis, Differential , Prevalence , Female , Perfusion Imaging/methods
12.
J Comput Assist Tomogr ; 48(2): 298-302, 2024.
Article En | MEDLINE | ID: mdl-37757843

OBJECTIVE: This study aimed to provide an alternative approach for quantifying the volume of the ischemic core (IC) if truncation of computed tomography perfusion (CTP) occurs in clinical practice. METHODS: Baseline CTP and follow-up diffusion-weighted imaging (DWI) data from 88 patients with stroke were retrospectively collected. CTP source images (CTPSI) from the unenhanced phase to the peak arterial phase (CTPSI-A) or the peak venous phase (CTPSI-V) were collected to simulate the truncation of CTP in the arterial or venous phases, respectively. The volume of IC on CTPSI-A (V CTPSI-A ) or CTPSI-V (V CTPSI-V ) was defined as the volume of the brain tissue with >65% reduction in attenuation compared with that of the normal tissue. The volume of IC on the baseline CTP (V CTP ) was defined as a relative cerebral blood flow of <30% of that in the normal tissue. The volume of the posttreatment infarct on the follow-up DWI (V DWI ) image was manually delineated and calculated. One-way analysis of variance, Bland-Altman plots, and Spearman correlation analyses were used for the statistical analysis. RESULTS: V CTPSI-A was significantly higher than V DWI ( P < 0.001); however, no significant difference was observed between V CTP and V DWI ( P = 0.073) or between V CTPSI-V and V DWI ( P > 0.999). The mean differences between V DWI and V CTPSI-V , V DWI and V CTP , and V DWI and V CTPSI-A were 1.70 mL (limits of agreement [LoA], -56.40 to 59.70), 8.30 mL (LoA, -40.70 to 57.30), and -68.10 mL (LoA, -180.90 to 44.70), respectively. Significant correlations were observed between V DWI and V CTP ( r = 0.68, P < 0.001) and between V DWI and V CTPSI-V ( r = 0.39, P < 0.001); however, no significant correlation was observed between V DWI and V CTPSI-A ( r = 0.20, P = 0.068). CONCLUSIONS: V CTPSI-V may be a promising method for quantifying the volume of the IC if truncation of CTP occurs.


Brain Ischemia , Stroke , Humans , Retrospective Studies , Tomography, X-Ray Computed/methods , Diffusion Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Perfusion , Brain Ischemia/diagnostic imaging , Cerebrovascular Circulation/physiology
13.
Magn Reson Med ; 91(5): 1774-1786, 2024 May.
Article En | MEDLINE | ID: mdl-37667526

PURPOSE: Software has a substantial impact on quantitative perfusion MRI values. The lack of generally accepted implementations, code sharing and transparent testing reduces reproducibility, hindering the use of perfusion MRI in clinical trials. To address these issues, the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) aimed to establish a community-led, centralized repository for sharing open-source code for processing contrast-based perfusion imaging, incorporating an open-source testing framework. METHODS: A repository was established on the OSIPI GitHub website. Python was chosen as the target software language. Calls for code contributions were made to OSIPI members, the ISMRM Perfusion Study Group, and publicly via OSIPI websites. An automated unit-testing framework was implemented to evaluate the output of code contributions, including visual representation of the results. RESULTS: The repository hosts 86 implementations of perfusion processing steps contributed by 12 individuals or teams. These cover all core aspects of DCE- and DSC-MRI processing, including multiple implementations of the same functionality. Tests were developed for 52 implementations, covering five analysis steps. For T1 mapping, signal-to-concentration conversion and population AIF functions, different implementations resulted in near-identical output values. For the five pharmacokinetic models tested (Tofts, extended Tofts-Kety, Patlak, two-compartment exchange, and two-compartment uptake), differences in output parameters were observed between contributions. CONCLUSIONS: The OSIPI DCE-DSC code repository represents a novel community-led model for code sharing and testing. The repository facilitates the re-use of existing code and the benchmarking of new code, promoting enhanced reproducibility in quantitative perfusion imaging.


Contrast Media , Magnetic Resonance Imaging , Humans , Contrast Media/pharmacokinetics , Reproducibility of Results , Magnetic Resonance Imaging/methods , Perfusion , Perfusion Imaging/methods
14.
Eur Radiol ; 34(2): 797-807, 2024 Feb.
Article En | MEDLINE | ID: mdl-37572189

OBJECTIVES: We aimed to evaluate the real-world variation in CT perfusion (CTP) imaging protocols among stroke centers and to explore the potential for standardizing vendor software to harmonize CTP images. METHODS: Stroke centers participating in a nationwide multicenter healthcare evaluation were requested to share their CTP scan and processing protocol. The impact of these protocols on CTP imaging was assessed by analyzing data from an anthropomorphic phantom with center-specific vendor software with default settings from one of three vendors (A-C): IntelliSpace Portal, syngoVIA, and Vitrea. Additionally, standardized infarct maps were obtained using a logistic model. RESULTS: Eighteen scan protocols were studied, all varying in acquisition settings. Of these protocols, seven, eight, and three were analyzed with center-specific vendor software A, B, and C respectively. The perfusion maps were visually dissimilar between the vendor software but were relatively unaffected by the acquisition settings. The median error [interquartile range] of the infarct core volumes (mL) estimated by the vendor software was - 2.5 [6.5] (A)/ - 18.2 [1.2] (B)/ - 8.0 [1.4] (C) when compared to the ground truth of the phantom (where a positive error indicates overestimation). Taken together, the median error [interquartile range] of the infarct core volumes (mL) was - 8.2 [14.6] before standardization and - 3.1 [2.5] after standardization. CONCLUSIONS: CTP imaging protocols varied substantially across different stroke centers, with the perfusion software being the primary source of differences in CTP images. Standardizing the estimation of ischemic regions harmonized these CTP images to a degree. CLINICAL RELEVANCE STATEMENT: The center that a stroke patient is admitted to can influence the patient's diagnosis extensively. Standardizing vendor software for CT perfusion imaging can improve the consistency and accuracy of results, enabling a more reliable diagnosis and treatment decision. KEY POINTS: • CT perfusion imaging is widely used for stroke evaluation, but variation in the acquisition and processing protocols between centers could cause varying patient diagnoses. • Variation in CT perfusion imaging mainly arises from differences in vendor software rather than acquisition settings, but these differences can be reconciled by standardizing the estimation of ischemic regions. • Standardizing the estimation of ischemic regions can improve CT perfusion imaging for stroke evaluation by facilitating reliable evaluations independent of the admission center.


Brain Ischemia , Stroke , Humans , Brain Ischemia/therapy , Stroke/diagnosis , Tomography, X-Ray Computed/methods , Perfusion Imaging/methods , Infarction , Perfusion
15.
Eur J Radiol ; 170: 111242, 2024 Jan.
Article En | MEDLINE | ID: mdl-38043382

PURPOSE: Cerebral arterial gas embolism (CAGE) occurs when air or medical gas enters the systemic circulation during invasive procedures and lodges in the cerebral vasculature. Non-contrast computer tomography (CT) may not always show intracerebral gas. CT perfusion (CTP) might be a useful adjunct for diagnosing CAGE in these patients. METHODS: This is a retrospective single-center cohort study. We included patients who were diagnosed with iatrogenic CAGE and underwent CTP within 24 h after onset of symptoms between January 2016 and October 2022. All imaging studies were evaluated by two independent radiologists. CTP studies were scored semi-quantitatively for perfusion abnormalities (normal, minimal, moderate, severe) in the following parameters: cerebral blood flow, cerebral blood volume, time-to-drain and time-to-maximum. RESULTS: Among 27 patient admitted with iatrogenic CAGE, 15 patients underwent CTP within the designated timeframe and were included for imaging analysis. CTP showed perfusion deficits in all patients except one. The affected areas on CTP scans were in general located bilaterally and frontoparietally. The typical pattern of CTP abnormalities in these areas was hypoperfusion with an increased time-to-drain and time-to-maximum, and a corresponding minimal decrease in cerebral blood flow. Cerebral blood volume was mostly unaffected. CONCLUSION: CTP may show specific perfusion defects in patients with a clinical diagnosis of CAGE. This suggests that CTP may be supportive in diagnosing CAGE in cases where no intracerebral gas is seen on non-contrast CT.


Brain Ischemia , Embolism, Air , Stroke , Humans , Retrospective Studies , Tomography, X-Ray Computed/methods , Embolism, Air/diagnostic imaging , Cohort Studies , Perfusion , Iatrogenic Disease , Perfusion Imaging/methods , Cerebrovascular Circulation/physiology
16.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Article En | MEDLINE | ID: mdl-37876299

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Brain , Magnetic Resonance Imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Perfusion Imaging/methods , Spin Labels , Cerebrovascular Circulation/physiology , Magnetic Resonance Angiography/methods , Perfusion
18.
J Neuroimaging ; 34(2): 249-256, 2024.
Article En | MEDLINE | ID: mdl-38146065

BACKGROUND AND PURPOSE: In large vessel occlusion (LVO) stroke patients, relative cerebral blood flow (rCBF)<30% volume thresholds are commonly used in treatment decisions. In the early time window, nearly infarcted but salvageable tissue volumes may lead to pretreatment overestimates of infarct volume, and thus potentially exclude patients who may otherwise benefit from intervention. Our multisite analysis aims to explore the strength of relationships between widely used pretreatment CT parameters and clinical outcomes for early window stroke patients. METHODS: Patients from two sites in a prospective registry were analyzed. Patients with LVOs, presenting within 3 hours of last known well, and who were successfully reperfused were included. Primary short-term neurological outcome was percent National Institutes of Health Stroke Scale (NIHSS) change from admission to discharge. Secondary long-term outcome was 90-day modified Rankin score. Spearman's correlations were performed. Significance was attributed to p-value ≤.05. RESULTS: Among 73 patients, median age was 66 (interquartile range 54-76) years. Among all pretreatment imaging parameters, rCBF<30%, rCBF<34%, and rCBF<38% volumes were significantly, inversely correlated with percentage NIHSS change (p<.048). No other parameters significantly correlated with outcomes. CONCLUSIONS: Our multisite analysis shows that favorable short-term neurological recovery was significantly correlated with rCBF volumes in the early time window. However, modest strength of correlations provides supportive evidence that the applicability of general ischemic core estimate thresholds in this subpopulation is limited. Our results support future larger-scale efforts to liberalize or reevaluate current rCBF parameter thresholds guiding treatment decisions for early time window stroke patients.


Brain Ischemia , Stroke , Humans , Middle Aged , Aged , Brain Ischemia/therapy , Tomography, X-Ray Computed/methods , Perfusion , Thrombectomy/methods , Treatment Outcome , Retrospective Studies , Perfusion Imaging/methods
19.
Stroke ; 54(12): 3081-3089, 2023 12.
Article En | MEDLINE | ID: mdl-38011237

BACKGROUND: The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain severely disabled even after successful recanalization. A better understanding of this outcome variability will help to improve clinical decision-making on MT in the acute stage. Here, we test whether current outcome models can be refined by integrating information on the preservation of the corticospinal tract as a functionally crucial white matter tract derived from acute perfusion imaging. METHODS: We retrospectively analyzed 162 patients with stroke and large vessel occlusion of the anterior circulation who were admitted to the University Medical Center Lübeck between 2014 and 2020 and underwent MT. The ischemic core was defined as fully automatized based on the acute computed tomography perfusion with cerebral blood volume data using outlier detection and clustering algorithms. Normative whole-brain structural connectivity data were used to infer whether the corticospinal tract was affected by the ischemic core or preserved. Ordinal logistic regression models were used to correlate this information with the modified Rankin Scale after 90 days. RESULTS: The preservation of the corticospinal tract was associated with a reduced risk of a worse functional outcome in large vessel occlusion-stroke patients undergoing MT, with an odds ratio of 0.28 (95% CI, 0.15-0.53). This association was still significant after adjusting for multiple confounding covariables, such as age, lesion load, initial symptom severity, sex, stroke side, and recanalization status. CONCLUSIONS: A preinterventional computed tomography perfusion-based surrogate of corticospinal tract preservation or disconnectivity is strongly associated with functional outcomes after MT. If validated in independent samples this concept could serve as a novel tool to improve current outcome models to better understand intersubject variability after MT in large vessel occlusion stroke.


Brain Ischemia , Stroke , Humans , Brain Ischemia/diagnostic imaging , Brain Ischemia/surgery , Retrospective Studies , Pyramidal Tracts/diagnostic imaging , Treatment Outcome , Stroke/diagnostic imaging , Stroke/surgery , Thrombectomy/methods , Perfusion Imaging/methods
20.
J Nucl Med ; 64(Suppl 2): 11S-19S, 2023 11.
Article En | MEDLINE | ID: mdl-37918848

Recently, PET systems with a long axial field of view have become the current state of the art. Total-body PET scanners enable unique possibilities for scientific research and clinical diagnostics, but this new technology also raises numerous challenges. A key advantage of total-body imaging is that having all the organs in the field of view allows studying biologic interaction of all organs simultaneously. One of the new, promising imaging techniques is total-body quantitative perfusion imaging. Currently, 15O-labeled water provides a feasible option for quantitation of tissue perfusion at the total-body level. This review summarizes the status of the methodology and the analysis and provides examples of preliminary findings on applications of quantitative parametric perfusion images for research and clinical work. We also describe the opportunities and challenges arising from moving from single-organ studies to modeling of a multisystem approach with total-body PET, and we discuss future directions for total-body imaging.


Perfusion Imaging , Water , Perfusion Imaging/methods , Positron-Emission Tomography/methods
...